DQM Report for run number 188

pysimdamicm.dqm.dqm_manager

June 13, 2022

Data directory: /data/calidaq_backup/PhotoNeutron/DataTaking/SbBe/Run_188 Output directory: /data/chicago/PhotoNeutronData/WADERS/DataTaking/DQM/SbBe Reference used: None Total images: 13

List of Figures

1	Active Area. Median dark current (only $q_{i,j} < q_i^{th}$) vs row	2
2	Slope DC fit (from MEMeanDCperRow) vs file	2
3	Intercept DC fit (from MEMeanDCperRow) vs file	3
4	Active area. Baseline vs row	3
5	Active area. MAD vs row	4
6	Full Image. Baseline vs column	4
7	Full Image. MAD vs column	5
8	Overscan. Baseline vs row	5
9	Overscan. MAD vs row	6
10	PedestalSubtractionProcess: mean pedestal vs file (gauss fit)	6
11	PedestalSubtractionProcess: mean sigma vs file (gauss fit)	7
12	PedestalSubtractionProcess: mean pedestal vs file (gauss fit)	7
13	PedestalSubtractionProcess: mean sigma vs file (gauss fit)	8
14	Masked pixels	9
15	Masked pixels	10
16	Number of pixels with $E > 300.0$ eV vs file \ldots	11
17	Number of pixels with $E > 300.0$ eV vs file \ldots	11
18	Pixel Charge Distribution	12
19	Pixel Charge Distribution	13
20	Pixel Charge Distribution	14
21	Pixel Charge Distribution	15
22	Zero electron peak (from MEFitDC) vs Image	16
23	Electron Single Resolution (from MEFitDC) vs Image	16
24	Dark current (from MEFitDC per Row) vs Image	17
25	Calibration constant (from MEFitDC) vs Image	17
26	Overscan. PCD Gaussian fit: μ_0	18
27	Overscan. PCD Gaussian fit: σ_0	18
28	Electronic column transient showing an exponential behavious	19
29	Column transient decay constant (from MEColTransient) vs Image	19
30	Column transient amplitude (from MEColTransient) vs Image	20
31	CCD Image	21
32	CCD Image	22
33	CCD Image	23
34	CCD Image	24
35	CCD Image	25

36	CCD Image	26
37	CCD Image	27
38	CCD Image	28
39	CCD Image	29
40	CCD Image	30
41	CCD Image	31
42	CCD Image	32
43	CCD Image	33
44	Overscan. Baseline Shift Status vs Image	34
45	Overscan. Horizontal Clusters vs Image	34
46	Overscan. Miscellaneous Noise Found Status	35

Active Area. Median dark current (only $q_{i,j} < q_i^{th}$) vs row [class MEMeanDCperRow]

Figure 1: Active Area. Median dark current (only $q_{i,j} < q_i^{th})$ vs row

Slope DC fit (from MEMeanDCperRow) vs file [class MEDCslope]

Figure 2: Slope DC fit (from MEMeanDCperRow) vs file

Intercept DC fit (from MEMeanDCperRow) vs file [class MEDCintercept]

Active area. Baseline vs row [class MESensorMedianperRow]

Figure 4: Active area. Baseline vs row

Active area. MAD vs row [class MESensorMADperRow]

Figure 5: Active area. MAD vs row

Full Image. Baseline vs column [class MEImageMedianperCol]

Figure 6: Full Image. Baseline vs column

Full Image. MAD vs column [class MEImageMADperCol]

Figure 7: Full Image. MAD vs column

Figure 8: Overscan. Baseline vs row

Overscan. MAD vs row [class MEOverscanMADperRow]

Figure 9: Overscan. MAD vs row

PedestalSubtractionProcess: mean pedestal vs file (gauss fit) [class MEMeanPedestalMu]

Figure 10: PedestalSubtractionProcess: mean pedestal vs file (gauss fit)

PedestalSubtractionProcess: mean sigma vs file (gauss fit) [class MEMeanPedestalSigma]

Figure 11: PedestalSubtractionProcess: mean sigma vs file (gauss fit)

PedestalSubtractionProcess: mean pedestal vs file (gauss fit) [class MEPedestalMuPerRow]

Figure 12: PedestalSubtractionProcess: mean pedestal vs file (gauss fit)

PedestalSubtractionProcess: mean sigma vs file (gauss fit) [class MEPedestalSigmaPerRow]

Figure 13: PedestalSubtractionProcess: mean sigma vs file (gauss fit)

Figure 14: Masked pixels

Masked pixels [run 188]: mask [14] masked pixels [class MEMaskedPixels]

Figure 15: Masked pixels

Figure 16: Number of pixels with E > 300.0 eV vs file

Number of pixels with E > 300.0 eV vs file [class MESinglePED]

Figure 17: Number of pixels with E > 300.0 eV vs file

Pixel Charge Distribution

Figure 18: Pixel Charge Distribution

Image used to Fit DC (HR image)

Figure 19: Pixel Charge Distribution

Pixel Charge Distribution

Figure 20: Pixel Charge Distribution

Image used to Fit DC (HR image)

Figure 21: Pixel Charge Distribution

Figure 22: Zero electron peak (from MEFitDC) vs Image

Figure 23: Electron Single Resolution (from MEFitDC) vs Image

Dark current (from MEFitDC per Row) vs Image [class MEFitDCLambda]

Figure 24: Dark current (from MEFitDC per Row) vs Image

Figure 25: Calibration constant (from MEFitDC) vs Image

Figure 26: Overscan. PCD Gaussian fit: μ_0

Overscan. PCD Gaussian fit: σ_0 [class MEOverscanPCDSigma]

Figure 27: Overscan. PCD Gaussian fit: σ_0

Electronic column transient showing an exponential behavious [class MEColTransient]

Figure 28: Electronic column transient showing an exponential behavious

Column transient decay constant (from MEColTransient) vs Image [class MEColTransientMu]

Figure 29: Column transient decay constant (from MEColTransient) vs Image

Column transient amplitude (from MEColTransient) vs Image [class MEColTransientAmplitude]

Figure 30: Column transient amplitude (from MEColTransient) vs Image

CCD Image: run 188, image 2000 [class MECCDImage]

Figure 31: CCD Image

CCD Image: run 188, image 1 [class MECCDImage]

Figure 32: CCD Image

CCD Image: run 188, image 10 [class MECCDImage]

Figure 33: CCD Image

CCD Image: run 188, image 11 [class MECCDImage]

Figure 34: CCD Image

CCD Image: run 188, image 12 [class MECCDImage]

Figure 35: CCD Image

CCD Image: run 188, image 2 [class MECCDImage]

Figure 36: CCD Image

CCD Image: run 188, image 3 [class MECCDImage]

Figure 37: CCD Image

CCD Image: run 188, image 4 [class MECCDImage]

Figure 38: CCD Image

CCD Image: run 188, image 5 [class MECCDImage]

Figure 39: CCD Image

CCD Image: run 188, image 6 [class MECCDImage]

Figure 40: CCD Image

CCD Image: run 188, image 7 [class MECCDImage]

Figure 41: CCD Image

CCD Image: run 188, image 8 [class MECCDImage]

Figure 42: CCD Image

CCD Image: run 188, image 9 [class MECCDImage]

Figure 43: CCD Image

Overscan. Baseline Shift Status vs Image [class MEBaselineShift]

Overscan. Horizontal Clusters vs Image [class MEHorizontalClusters]

Figure 45: Overscan. Horizontal Clusters vs Image

Overscan. Miscellaneous Noise Found Status [class MESigmaCutoffNoise]

Figure 46: Overscan. Miscellaneous Noise Found Status